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1. Introduction

Motion of bubbles in non-Newtonian fluids is important because it occurs in many industrially
important situations, such as in chemical and biochemical engineering. Numerous investigations
concerning various aspects of the bubble motion have been reported in the literature and have
been reviewed in Chhabra (1993). The free surface cell model (Happel, 1958) has been proven
to be an excellent model in analyzing slow flow of non-Newtonian fluids in multiparticle systems
(Mohan and Raghurman, 1976a,b; Kawase and Ulbrecht, 1981; Chhabra and Raman, 1984). The
cell model has been extended to the flow of both Newtonian and non-Newtonian fluids in multiple
droplets or bubbles system (Gar-Or and Waslo, 1968; Bhavaraju et al., 1978; Kawase and Ulbr-
echt, 1981; Jarzebski and Malinowski, 1986, 1987a,b; Gummalam and Chhabra, 1987; Gumma-
lam et al., 1988; Zhu and Deng, 1994; Zhu, 1995; Zhu, 2001). Jarzebski and Malinowski used the
variational principles to obtain the upper and lower bounds on the drag coefficient for a power
law fluid (Jarzebski and Malinowski, 1986) and for a Carreau fluid (Jarzebski and Malinowski,
1987a). The variational principles were also used to calculate the rising velocity of spherical bub-
bles in a power law fluid (Gummalam and Chhabra, 1987) and in a Carreau fluid (Gummalam
et al., 1988). The numerical simulations have also been used to study the flow of droplets and bub-
bles in power law fluids (Zhu and Deng, 1994) and Carreau fluids (Zhu, 1995; Zhu, 2001) by using
the cell model. Chhabra (1998) used the cell model for estimating the rising velocity of a swarm of
spherical bubbles in power law liquids at high Reynolds number. Kawase and Ulbrecht (1981)
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developed an analytical solution of power law fluids through multiple particles and multiple bub-
bles by approximating the second invariant of the rate of deformation tensor using Newtonian
results (Hirose and Moo-Young, 1969). Jarzebski and Malinowski (1987b) established the
approximate expressions for the drag coefficient and Sherwood number for slow motion of a
swarm of Newtonian drops in a power law fluid using a similar approach to that of Kawase
and Ulbrecht (1981).

To summarize, previous studies used approximate analytical, the variational bound-form and
numerical solutions to solve the problem. The closed form analytical solutions provide deeper in-
sights as to the significance of governing factors. They can be the common tools of many engineer-
ing applications, such as creation of simplified engineering models for predictions and sensitivity
analyses, separation of the complex process involved in many engineering applications into fewer
conceptually more tractable processes, etc. In this study, a simpler and more effective approximate
analytical solution for the power law fluids through a swarm of bubbles is developed. The analyt-
ical solution for the drag coefficients and rising velocity is derived by assuming that the all flow
related quantities for the power law fluid is close to its Newtonian counterparts. The approach
used is similar to the technique used in previous investigations (e.g., Hirose and Moo-Young,
1969; Kawase and Ulbrecht, 1981; Jarzebski and Malinowski, 1987b), but further simplifies the
approximation procedure. The previous studies typically used Newtonian results to approximate
only the components of the rate of deformation tensor. The same problem is also solved using the
finite difference method. The developed approximate solutions are compared against the numer-
ical solutions.
2. Problem statement

The rheological behavior of the fluids is represented by a power law model,
sij ¼ 2Kð2PÞðn�1Þ=2Dij ð1Þ
where sij is the stress tensor, K is the consistency index, n is the flow behavior index, Dij is the rate
of deformation tensor, and the second invariant of the rate of deformation tensor, P, is given by
P ¼ D2
rr þ D2

hh þ D2
// þ 2D2

rh ð2Þ
The following dimensionless variables are introduced,
D�
ij ¼

Dij

ðV 0=RÞ
; P� ¼ P

ðV 0=RÞ2
; sij ¼

sij
KðV 0=RÞn

p� ¼ p
KðV 0=RÞn

; v�i ¼
vi
V 0

; n ¼ r
R
; w� ¼ w

V 0R2

ð3Þ
where V0 is the superficial velocity, R is the radius of the bubble, p is the pressure, vi is the velocity
component, r is radial distance, and w is the stream function.

The governing equations can be written in the spherical coordinate system as,
E�2w� ¼ x�n sin h ð4Þ
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where h is the latitude angle of the spherical coordinate system. The boundary conditions are spec-
ified as follows:

On the bubble surface,
n ¼ 1; w� ¼ 0; x� ¼ 2v�h ð8Þ
and on the outer sphere surface,
n ¼ s; w� ¼ � 1

2
n2sin2h; x� ¼ 2ðv�h þ sin hÞ=s ð9Þ
where s is the dimensionless radius of the cell related to the gas holdup U (i.e., the gas volumetric
fraction in the system) by
s ¼ R1

R
¼ U�1=3 ð10Þ
where R1 is the radius of the hypothetical fluid envelope.
3. Approximate solutions

When non-Newtonian flow behavior is not very strong (i.e., jn � 1j is small), we assume that all
flow related variables that are raised to the power of (n � 1)/2 or multiplied by (n � 1) can be eval-
uated by using the Newtonian solutions as approximation. The procedure used in this study thus
uses a wider range of approximation than that used typically in earlier investigations (e.g., Hirose
and Moo-Young, 1969; Kawase and Ulbrecht, 1981; Jarzebski and Malinowski, 1987b) in which
only the components of the rate of deformation tensor were evaluated using the Newtonian re-
sults. Therefore, the assumption in this study is broader and the results are simpler. Substituting
the Newtonian results for these terms in Eqs. (4) and (5), one can obtain,
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E�4w� ¼ 6nðn� 1Þ
1� 1=s

n�2sin2h ð11Þ
The general solution to the above equation can be established as,
w� ¼ a1n
4 þ a2n

2 þ a3nþ a4n
�1 þ nðn� 1Þ

1� 1=s
n ln n

� �
sin2h ð12Þ
The constants in Eq. (12) should be determined to satisfy the boundary conditions (8) and (9),
which leads to,
a1 ¼
nðn� 1Þsð1� s2Þ
6ð1� s5Þðs� 1Þ ð13aÞ
a4 ¼
nðn� 1Þs
6ðs� 1Þ � a1s5 ð13bÞ
a2 ¼
�s=2� nðn� 1Þs ln s=ðs� 1Þ � a1ðs3 � 1Þ � a4ðs�2 � 1Þ

s� 1
ð13cÞ
a3 ¼ �a1 � a2 � a4 ð13dÞ
The dimensionless surface pressure is calculated using the following relationship,
p�s ðhÞ ¼ p�1 þ
Z h
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The flow drag on the bubble is then given by
F D ¼ 2pR2

Z p

0

ð�p þ srrÞr¼R cos h sin hdh�
Z p

0

ðsrhÞr¼Rsin
2hdh

� �
¼ 2pR2KðV 0=RÞnD0 ð16Þ
where D0 ¼
Z p

0

½�p�s ðhÞ þ ðs�rrÞz¼0� cos h sin hdh ð17Þ
The correction factor of drag coefficient for non-Newtonian behavior is,
Y D ¼ CD

16=R0 ¼ 2n�2D0 ð18Þ

e
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where CD is the drag coefficient, R0
e is Reynolds number for power law fluids, defined as,
Fig. 1
rate o
R0
e ¼

qV 2�n
0 ð2RÞn

K
ð19Þ
By using the approximate solutions, the correction factor of drag coefficient is then,
Y D¼ 2n�1

nðnþ2Þ
3

ð1�s�1Þ2

( )ðn�1Þ=2

8ð1�nÞa1þ2ð1þ2nÞa3�12ð1�nÞa4þ
ðn�1Þð1�n�4n2Þ

1� s�1

� �

ð20Þ

The governing Eqs. (4) and (5) are also solved using the finite difference technique. The implemen-
tation of the numerical technique is similar to Zhu (2001) where the numerical scheme was devel-
oped for a similar problem for the Carreau model.
4. Results and discussion

In order to show that the differences of the key flow related variables (such as vorticity, rate of
deformation tensor) between non-Newtonian and Newtonian fluids are indeed small and there-
fore the assumption used can be justified, the second invariant of the rate of deformation tensor
on the bubble surface for both the Newtonian and the power law fluids is shown in Fig. 1(a) and
the surface vorticity is shown in Fig. 1(b). Results show that only in the case of very small gas
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holdup, is the discrepancy of the second invariant between the Newtonian and the power law flu-
ids noticeable. In the medium range of the gas holdup, Newtonian flow field is indeed a very good
approximation for that of power law fluids.

4.1. Drag coefficient

The Comparison of the drag coefficient (in terms of the correction factor, YD), from the
approximate solutions with that from the full numerical results is shown in Fig. 2. As expected,
the drag coefficient YD decreases as the flow behavior index, n, decreases due to stronger shear-
thinning (decreasing viscosity) behavior of the power law fluids. Results show that the drag coef-
ficient increases as the gas holdup increases and the degree of this augmentation becomes less
significant as the shearthinning effect becomes stronger. Therefore it may be concluded that the
shearthinning behavior of fluids reduces the holdup effect on the drag coefficient. It can be ob-
served that the analytical solutions compare quite favorably with the full numerical results, espe-
cially for the medium gas holdup range.

4.2. Rising velocity

The expression for the ratio of the bubble swarm velocity to single-bubble velocity in power law
fluids can be obtained as,
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Fig. 2. Comparison of approximate solutions against full numerical results, (a) drag coefficient vs. Newtonian flow
behavior index, n; and (b) drag coefficient vs. gas holdup, U.
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USW

USI

¼ Y DSI

Y D

� �1=n
ð21Þ
where YDSI denotes the drag coefficient for a single bubble rising in a power law fluid.
It can then be obtained from the approximate solution that
USW

USI

¼ ð1� s�1Þ nð19� 2n� 8n2Þ
3ð1� s�1Þ½8ð1� nÞa1þ 2ð1þ 2nÞa3� 12ð1� nÞa4� þ 3ðn� 1Þð1� n� 4n2Þ

� �1=n

ð22Þ

The comparison of the ratio of the bubble swarm velocity to the single-bubble velocity between
the approximate solutions and the full numerical results is shown in Fig. 3. Results show that
up to about n = 0.6 they agree very well. At n = 0.4, the rising velocity increases initially and
reaches a maximum value at about U = 0.2 due to the nullifying of two opposite mechanisms,
i.e., the hindrance effect of the bubbles and the shearthinning effect of the fluids. The approximate
solutions slightly overestimate the velocity ratio at small gas holdup and underestimate it at high
gas holdup. The analytical prediction for the rising velocity is slightly less accurate than that for
the drag coefficient, since any inaccuracy of the approximate solutions is magnified by a power of
1/n in predicting the rising velocity.

To the best of our knowledge, no sufficient details regarding a swarm of bubbles in non-New-
tonian fluids were given in experimental studies reported in the literature to enable a direct com-
parison between the present study and experimental results. However, the physical resemblance of
a swarm of bubbles to an assemblage of spherical rigid particles, previously successfully solved
using the cell model gives grounds for anticipating a fair predictive capability for the solutions
developed in this study.
5. Concluding remarks

The drag coefficient and rising velocity of a swarm of bubbles through power law fluids under
the slow flow conditions are obtained analytically by using the widely used free surface cell model.
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Results show that the simple approximate analytical solutions in the present study predict the
drag coefficient and the rising velocity of the bubbles with good accuracy, for n as small as 0.5.
The non-Newtonian disturbance to the key flow fields, such as the flow velocity and the vorticity,
is small. The small flow field disturbance permits the approximation of flow related quantities
using Newtonian counterparts, which forms the basis for this study. While the analytical solutions
developed in this study generally agree very well with the full numerical results, the approximate
solutions slightly overestimate the rising velocity and underestimate the drag coefficient at small
gas holdup.
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